April 19, 2022 Volume 18 Issue 15

Electrical/Electronic News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

Intro to reed switches, magnets, magnetic fields

This brief introductory video on the DigiKey site offers tips for engineers designing with reed switches. Dr. Stephen Day, Ph.D. from Coto Technology gives a solid overview on reed switches -- complete with real-world application examples -- and a detailed explanation of how they react to magnetic fields.
View the video.


Bi-color LEDs to light up your designs

Created with engineers and OEMs in mind, SpectraBright Series SMD RGB and Bi-Color LEDs from Visual Communi-cations Company (VCC) deliver efficiency, design flexibility, and control for devices in a range of industries, including mil-aero, automated guided vehicles, EV charging stations, industrial, telecom, IoT/smart home, and medical. These 50,000-hr bi-color and RGB options save money and space on the HMI, communicating two or three operating modes in a single component.
Learn more.


All about slip rings: How they work and their uses

Rotary Systems has put together a really nice basic primer on slip rings -- electrical collectors that carry a current from a stationary wire into a rotating device. Common uses are for power, proximity switches, strain gauges, video, and Ethernet signal transmission. This introduction also covers how to specify, assembly types, and interface requirements. Rotary Systems also manufactures rotary unions for fluid applications.
Read the overview.


Seifert thermoelectric coolers from AutomationDirect

Automation-Direct has added new high-quality and efficient stainless steel Seifert 340 BTU/H thermoelectric coolers with 120-V and 230-V power options. Thermoelectric coolers from Seifert use the Peltier Effect to create a temperature difference between the internal and ambient heat sinks, making internal air cooler while dissipating heat into the external environment. Fans assist the convective heat transfer from the heat sinks, which are optimized for maximum flow.
Learn more.


EMI shielding honeycomb air vent panel design

Learn from the engineering experts at Parker how honeycomb air vent panels are used to help cool electronics with airflow while maintaining electromagnetic interference (EMI) shielding. Topics include: design features, cell size and thickness, platings and coatings, and a stacked design called OMNI CELL construction. These vents can be incorporated into enclosures where EMI radiation and susceptibility is a concern or where heat dissipation is necessary. Lots of good info.
Read the Parker blog.


What is 3D-MID? Molded parts with integrated electronics from HARTING

3D-MID (three-dimensional mechatronic integrated devices) technology combines electronic and mechanical functionalities into a single, 3D component. It replaces the traditional printed circuit board and opens up many new opportunities. It takes injection-molded parts and uses laser-direct structuring to etch areas of conductor structures, which are filled with a copper plating process to create very precise electronic circuits. HARTING, the technology's developer, says it's "Like a PCB, but 3D." Tons of possibilities.
View the video.


Loss-free conversion of 3D/CAD data

CT CoreTech-nologie has further developed its state-of-the-art CAD converter 3D_Evolution and is now introducing native interfaces for reading Solidedge and writing Nx and Solidworks files. It supports a wide range of formats such as Catia, Nx, Creo, Solidworks, Solidedge, Inventor, Step, and Jt, facilitating smooth interoperability between different systems and collaboration for engineers and designers in development environments with different CAD systems.
Learn more.


Top 5 reasons for solder joint failure

Solder joint reliability is often a pain point in the design of an electronic system. According to Tyler Ferris at ANSYS, a wide variety of factors affect joint reliability, and any one of them can drastically reduce joint lifetime. Properly identifying and mitigating potential causes during the design and manufacturing process can prevent costly and difficult-to-solve problems later in a product lifecycle.
Read this informative ANSYS blog.


Advanced overtemp detection for EV battery packs

Littelfuse has introduced TTape, a ground-breaking over-temperature detection platform designed to transform the management of Li-ion battery systems. TTape helps vehicle systems monitor and manage premature cell aging effectively while reducing the risks associated with thermal runaway incidents. This solution is ideally suited for a wide range of applications, including automotive EV/HEVs, commercial vehicles, and energy storage systems.
Learn more.


Benchtop ionizer for hands-free static elimination

EXAIR's Varistat Benchtop Ionizer is the latest solution for neutralizing static on charged surfaces in industrial settings. Using ionizing technology, the Varistat provides a hands-free solution that requires no compressed air. Easily mounted on benchtops or machines, it is manually adjustable and perfect for processes needing comprehensive coverage such as part assembly, web cleaning, printing, and more.
Learn more.


LED light bars from AutomationDirect

Automation-Direct adds CCEA TRACK-ALPHA-PRO series LED light bars to expand their offering of industrial LED fixtures. Their rugged industrial-grade anodized aluminum construction makes TRACKALPHA-PRO ideal for use with medium to large-size industrial machine tools and for use in wet environments. These 120 VAC-rated, high-power LED lights provide intense, uniform lighting, with up to a 4,600-lumen output (100 lumens per watt). They come with a standard bracket mount that allows for angle adjustments. Optional TACLIP mounts (sold separately) provide for extra sturdy, vibration-resistant installations.
Learn more.


World's first metalens fisheye camera

2Pi Optics has begun commercial-ization of the first fisheye camera based on the company's proprietary metalens technology -- a breakthrough for electronics design engineers and product managers striving to miniaturize the tiny digital cameras used in advanced driver-assistance systems (ADAS), AR/VR, UAVs, robotics, and other industrial applications. This camera can operate at different wavelengths -- from visible, to near IR, to longer IR -- and is claimed to "outperform conventional refractive, wide-FOV optics in all areas: size, weight, performance, and cost."
Learn more.


Orbex offers two fiber optic rotary joint solutions

Orbex Group announces its 700 Series of fiber optic rotary joint (FORJ) assemblies, supporting either single or multi-mode operation ideal for high-speed digital transmission over long distances. Wavelengths available are 1,310 or 1,550 nm. Applications include marine cable reels, wind turbines, robotics, and high-def video transmission. Both options feature an outer diameter of 7 mm for installation in tight spaces. Construction includes a stainless steel housing.
Learn more.


Mini tunnel magneto-resistance effect sensors

Littelfuse has released its highly anticipated 54100 and 54140 mini Tunnel Magneto-Resistance (TMR) effect sensors, offering unmatched sensitivity and power efficiency. The key differentiator is their remarkable sensitivity and 100x improvement in power efficiency compared to Hall Effect sensors. They are well suited for applications in position and limit sensing, RPM measurement, brushless DC motor commutation, and more in various markets including appliances, home and building automation, and the industrial sectors.
Learn more.


Panasonic solar and EV components available from Newark

Newark has added Panasonic Industry's solar inverters and EV charging system components to their power portfolio. These best-in-class products help designers meet the growing global demand for sustainable and renewable energy mobility systems. Offerings include film capacitors, power inductors, anti-surge thick film chip resistors, graphite thermal interface materials, power relays, capacitors, and wireless modules.
Learn more.


Scientists discover 'knob' to control magnetic behavior in quantum material

Magnetism, one of the oldest technologies known to humans, is at the forefront of new-age materials that could enable next-generation lossless electronics and quantum computers. Researchers led by Penn State and the University of California, San Diego have discovered a new "knob" to control the magnetic behavior of one promising quantum material, and the findings could pave the way toward novel, efficient, and ultra-fast devices.

"The unique quantum mechanical make-up of this material -- manganese bismuth telluride -- allows it to carry lossless electrical currents, something of tremendous technological interest," said Hari Padmanabhan, who led the research as a graduate student at Penn State. "What makes this material especially intriguing is that this behavior is deeply connected to its magnetic properties. So, a knob to control magnetism in this material could also efficiently control these lossless currents."

Manganese bismuth telluride, a 2D material made of atomically thin stacked layers, is an example of a topological insulator, exotic materials that simultaneously can be insulators and conductors of electricity, the scientists said. Importantly, because this material is also magnetic, the currents conducted around its edges could be lossless, meaning they do not lose energy in the form of heat. Finding a way to tune the weak magnetic bonds between the layers of the material could unlock these functions.

Tiny vibrations of atoms, or phonons, in the material may be one way to achieve this, the scientists reported April 8 in the journal Nature Communications.

"Phonons are tiny atomic wiggles -- atoms dancing together in various patterns, present in all materials," Padmanabhan said. "We show that these atomic wiggles can potentially function as a knob to tune the magnetic bonding between the atomic layers in manganese bismuth telluride."

The scientists at Penn State studied the material using a technique called magneto-optical spectroscopy, shooting a laser onto a sample of the material and measuring the color and intensity of the reflected light, which carries information on the atomic vibrations. The team observed how the vibrations changed as they altered the temperature and magnetic field.

As they altered the magnetic field, the scientists observed changes in the intensity of the phonons. This effect is due to the phonons influencing the weak inter-layer magnetic bonding, the scientists said.

"Using temperature and magnetic field to vary the magnetic structure of the material, much like using a refrigerator magnet to magnetize a needle compass -- we found that the phonon intensities were strongly correlated with the magnetic structure," said Maxwell Poore, graduate student at UC San Diego, and co-author of the study. "Pairing these findings with theoretical calculations, we inferred that these atomic vibrations modify the magnetic bonding across layers of this material."

Scientists at UC San Diego conducted experiments to track these atomic vibrations in real time. The phonons oscillate faster than a trillion times a second, many times faster than modern computer chips, the scientists said. A 3.5-gigahertz computer processor, for example, operates at a frequency of 3.5 billion times per second.

"What was beautiful about this result was that we studied the material using different complementary experimental methods at different institutions and they all remarkably converged to the same picture," said Peter Kim, graduate student at UC San Diego, and co-author of the paper.

Further research is needed to directly use the magnetic knob, the scientists said. If that can be achieved, though, it could lead to ultra-fast devices that can efficiently and reversibly control lossless currents.

"A major challenge in making faster, more powerful electronic processors is that they heat up," said Venkatraman Gopalan, professor of materials science and engineering and physics at Penn State, Padmanabhan's former adviser, and co-author of the paper. "Heating wastes energy. If we could find efficient ways to control materials that host lossless currents, that would potentially allow us to deploy them in future energy-efficient electronic devices."

Source: Penn State

Published April 2022

Rate this article

[Scientists discover 'knob' to control magnetic behavior in quantum material]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2022 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy